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Abstract

Purpose – This paper aims to study thermocapillarity-induced flow of thin liquid films covering
heated horizontal walls with 2D topography.

Design/methodology/approach – A numerical model based on the 2D solution of heat and fluid
flow within the liquid film, the gas above the film and the structured wall is developed. The full
Navier-Stokes equations are solved and coupled with the energy equation by a finite difference
algorithm. The movable gas-liquid interface is tracked by means of the volume-of-fluid method. The
model is validated by comparison with theoretical and experimental data showing a good agreement.

Findings – It is demonstrated that convective motion within a film on a structured wall exists at any
nonzero Marangoni number. The motion is caused by surface tension gradients induced by
temperature differences at the gas-liquid interface due to the spatial structure of the heated wall. These
simulations predict that the maximal flow velocity is practically independent from the film thickness,
and increases with increasing temperature difference between the wall and the surrounding gas. It is
found that an abrupt change in wall temperature causes rupture of the liquid film. The thermocapillary
convection notably enhances heat transfer in liquid films on heated structured walls.

Research limitations/implications – Our solutions are restricted to the case of periodic wall
structure, and the flow is enforced to be periodic with a period equal to that of the wall.

Practical implications – The reported results are useful for design of the heat transfer equipment.

Originality/value – New effects in thermocapillary convection are presented and studied using a
developed numerical model.

Keywords Volume measurement, Fluid dynamics, Numerical control, Convection, Heat transfer

Paper type Research paper

Nomenclature
A ¼ wall structure amplitude
Bi ¼ Biot number
C ¼ color function
~C ¼ averaged color function

cp ¼ specific heat capacity
d ¼ wall structure period
F ¼ body forces
Fs ¼ body force due to surface tension
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hg ¼ gas layer thickness
hw ¼ wall structure height
Dh ¼ average thickness of liquid film
Dh

*
¼ minimal thickness of liquid film

k ¼ interface curvature
M ¼ Marangoni number
M cr ¼ critical Marangoni number
n ¼ unit normal to interface
Nu ¼ Nusselt number
p ¼ pressure
S ¼ interface “height” function
t ¼ time
T ¼ temperature
DT ¼ temperature drop
u ¼ velocity
umax ¼ maximal liquid velocity at interface

Greek symbols
a ¼ thermal diffusivity

ds ¼ Dirac distribution function at
interface

l ¼ thermal conductivity
m ¼ dynamic viscosity
r ¼ density
s ¼ surface tension
sT ¼ temperature coefficient of surface

tension
t ¼ shear stress tensor
w ¼ wall structure angle

Superscripts
n ¼ iteration level

Subscripts
0, g ¼ gas
1 ¼ liquid
i, j ¼ computational cell index
w ¼ wall

Introduction
Surface tension is crucial in the dynamics of thin liquid films on substrates of different
topography, which are frequently encountered in many engineering applications,
including the thermal management of electronic devices, food processing, chemical
engineering, MEMS.

Normally, the surface tension of a liquid is a decreasing function of temperature.
If the temperature varies at the gas-liquid interface, surface tension gradients cause
thermocapillary (Marangoni) flow (Colinet et al., 2001). If a thin liquid film is heated on
a planar substrate of a uniform temperature, a conducting solution exists, which
implies that the film is motionless and the free surface of the liquid is isothermal. This
solution is stable for sufficiently small temperature gradients across the liquid layer.
If the temperature gradient exceeds a critical value, the conducting solution loses
stability and convective patterns are developed (Pearson, 1958). If the substrate has a
structure on its surface, the convection prevails for any temperature difference
(Alexeev et al., 2005). It occurs due to the temperature inhomogeneity, which is imposed
on the interface by the spatial structure of the substrate.

We develop a numerical model to describe the motion of a thin liquid film on a
heated structured wall. We deploy a finite difference algorithm to integrate the
Navier-Stokes and energy equations. To cope with the movable gas-liquid interface, we
apply the volume-of-fluid (VOF) method (Scardovelli and Zaleski, 1999). The
calculations are performed simultaneously through the whole computational domain
containing the gas and liquid regions, while the surface force at the interface is
included into the momentum balance equations via a volumetric force (Kothe and
Mjolsness, 1992). The energy equation is solved within the solid wall as well.

There are only few previous studies where the Marangoni flows in a cavity are
considered in the framework of the VOF. Sasmal and Hochstein (1994) calculated the
Marangoni convection induced by a temperature difference between the sidewalls of a
rectangular cavity. They studied heat transfer within the cavity and the effect of the
contact angle on the flow patterns. More recently, Wang (2002) applied a VOF model to
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investigate the Marangoni convection in trapezoidal cavities. In these works, the
temperature gradient was caused by a temperature difference between the sidewalls.
Thus, the heat flux was mostly directed along the gas-liquid interface, in that way it
was justified to neglect its component normal to the interface by considering the
adiabatic condition at the free surface. In contrast, in a flow on a heated structured
wall, the heat flux is practically perpendicular to the gas-liquid interface resulting in a
strong temperature gradient in that direction. In this case, the thermocapillary force is
induced by a relatively small variation of the liquid temperature along the interface.
Hence, a very accurate calculation of the temperature is required to avoid unphysical
flow currents due to inaccuracy in the temperature gradient evaluation.

In present work, we study thermocapillary motion within a thin film of a low
volatility liquid on a heated highly thermal conductive wall with 2D microscale
topography. We consider a situation where the liquid layer covers a horizontal wall,
and its thickness is comparable with the amplitude of the wall microstructure. We
neglect the effect of gravity. Our solutions are restricted to the case of periodic wall
structure, and the flow is enforced to be periodic with a period equal to that of the wall.

Numerical model
Governing equations
The incompressible flow is governed by the continuity equation:

7 ·u ¼ 0; ð1Þ

and the Navier-Stokes equations:

r
›u

›t
þ u ·7u

� �
¼ 27pþ 7 · tþ F; ð2Þ

where u is the velocity, r the density, p the pressure, F the body forces, and t time.
Moreover, t is the shear stress tensor given by:

tij ¼
m

2

›uj
›xi

þ
›ui
›xj

� �
; ð3Þ

where m is the dynamic viscosity.
The equations are coupled with the energy equation given by:

rcp
›T

›t
þ u ·7T

� �
¼ 7 · l7T; ð4Þ

where T is the temperature, cp the specific heat capacity, and l the thermal
conductivity.

To track the moving gas-liquid interface, we utilize the VOF technique (Scardovelli
and Zaleski, 1999). A color function C is introduced, which equals to 1 within the liquid
and to 0 within the gas. The color function is governed by a transport equation:

›C

›t
þ u ·7C ¼ 0: ð5Þ

We are looking for the solutions, which are characterized by a period equal to that of
the wall structure, d (Figure 1). Thus, we impose a symmetry boundary condition at
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x ¼ 0 and x ¼ d=2. We also impose T ¼ Tw at y ¼ 0 and T ¼ Tw 2 DT at
y ¼ hw þ Dh* þ hg. Moreover, a free flow condition for the velocity ð›u=›y ¼ 0Þ is
applied at y ¼ hw þ Dh* þ hg.

Numerical method
The hydrodynamic equations (1)-(3) are solved with a finite difference algorithm on a
rectangular staggered grid using the projection method (Ferziger and Peric, 2002). The
projection method consists of three steps. First, the prediction velocity field u* due to
the advective and diffusive terms in equation (2) is to calculate semi-implicitly:

Du

Dt
þ un ·7Du2

1

rn
7 ·Dt ¼ 2un ·7un þ

1

rn
7 · t n þ

1

rn
Fn; ð6Þ

where Du ¼ u* 2 un and Dt ¼ t* 2 t n. Then, the Poisson equitation, which is
obtained using equation (1), is solved to calculate the pressure field:

7 ·
1

rn
7pnþ1

� �
¼

7 ·u*

Dt
: ð7Þ

Finally, the velocity field is corrected to the time level nþ 1:

unþ1 ¼ u* þ
Dt

rn
7 ·u*: ð8Þ

Using the velocity field unþ1, the color function is advected by solving:

DC

Dt
þ unþ1 ·7DC ¼ 2unþ1 ·7C n; ð9Þ

where DC ¼ C nþ1 2 C n. The final stage of the numerical solution involves calculation
of the temperature field:

Figure 1.
Outline of the structured
wall from the experiments
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DT

Dt
þ unþ1 ·7DT 2

1

ðcprÞ
nþ1

7 · lnþ17DT

¼ 2unþ1 ·7T n þ
1

ðcprÞ
nþ1

7 · lnþ17T n: ð10Þ

Here, DT ¼ T nþ1 2 T n.
The advection terms in the r.h.s. of equations (6), (9) and (10) are solved with the

third order essentially non-oscillatory (ENO) scheme (Shu and Osher, 1988), while the
terms in the advection terms in the l.h.s. of these equations as well as the viscous and
conductivity terms are approximated with the second order finite differences. The ENO
scheme is used since it provides good tracking of the discontinuity-like interfaces.
To treat implicit parts of equations (6), (9) and (10), we utilize the approximate
factorization approach and solve the equations separately along the x- and y-directions.
The overall accuracy of our method is of the second order in space.

The multigrid technique (Wesseling, 1991) is applied to solve the Poisson equitation
for pressure (equation (7)). We use v-cycle and the number of multigrid levels K is
given by 3 £ 2K ¼ minðNx;NyÞ, where Nx and Ny are the grid size in the x- and
y-directions, respectively. The use of the multigrid technique reduces the overall
computational time by an order of magnitude as compared to the standard iterative
methods.

To impose the non-slip velocity condition at the liquid-solid boundary, we utilize the
immersed boundary approach. We set the x and y velocity components within the solid
domain at the nodes right next to the liquid-solid interface such that the linearly
interpolated velocity at the interface equals to zero. We also set at these nodes a zero
gradient for pressure, while solving equation (7).

Following the VOF approach, we calculate the values of density and viscosity used
in equations (6)-(10) as:

r ¼ ð1 2 ~CÞr0 þ ~Cr1; m ¼ ð1 2 ~CÞm0 þ ~Cm1 ð11Þ

Hereafter, the index 1 stands for the liquid, while the index 0 denotes the gas
properties. Moreover, ~C is the averaged color function (Alexeev et al., 2005).

Accurate calculation of the temperature distribution along the gas-liquid interface
is critical for a correct modeling of thermocapillary driven flows. When the heat flux is
directed across the interface, the difficulty arises due to the discontinuity of properties
of the fluids across the interface. In this case, the cell average values cannot provide a
satisfactory description for the fluid properties at the interface. In particular, our
simulations show that the use of an averaging, either algebraic or geometric, for the
calculation of l causes spurious currents in the fluids.

Mehdi-Nejad et al. (2005) have recently developed an approach for a more accurate
calculation of the convection terms in the energy equation. They successfully applied
this approach to study heat transfer in molten tin drops during their fall. In the case of
thermocapillary driven flows on heated walls, however, the heat flux across the
interface is typically dominated by the diffusive rather than convective terms.
We, therefore, propose a simple approach to calculate the temperature flux across the
interface. Consider an interface that is located at the cell ði; jÞ such that the upper and
bottom boundaries of the cell are along the interface (Figure 2). To resolve the diffusive

Thermocapillary
flow and heat

transfer

251



terms in equation (10), we approximate the heat fluxes across the bottom and upper
boundaries of ði; j Þ as:

f2y ¼ 2l1

T1
i;j 2 Ti;j21

Dyþ Dy1
and fþy ¼ 2l0

Ti;jþ1 2 T0
i;j

Dyþ Dy 0
; ð12Þ

respectively. Here, Dy 1 ¼ Ci; jDy, Dy
0 ¼ ð1 2 Ci; jÞDy and Dy is the computational grid

step. The temperatures T0
i; j and T1

i; j are calculated using two conditions: continuity of
the temperature at the interface:

Ti
i;j ¼ Ti;jþ1 þ T0

i;j 2 Ti;jþ1

� � Dyþ 2Dy 0

Dyþ Dy 0
; ð13aÞ

Ti
i;j ¼ Ti;j21 þ T1

i;j 2 Ti;j21

� � Dyþ 2Dy 1

Dyþ Dy 1
: ð13bÞ

and energy conservation within the cell ði; jÞ:

rcpTi;j ¼ ðrcpÞ0T
0
i;jð1 2 Ci;jÞ þ ðrcpÞ1T

1
i;jCi;j; ð14Þ

where:

rcp ¼ ð1 2 Ci;jÞðrcpÞ0 þ Ci;jðrcpÞ1: ð15Þ

Combining equations (13)-(15), T0
i;j and T1

i;j can be readily calculated. These
temperatures are also used to evaluate the temperature gradients within the liquid near
the gas-liquid interface needed to calculate the thermocapillary force acting at the
interface.

To estimate the heat flux component, which is directed along the interface at the cell
ði; jÞ, an algebraic averaging for l is used (equation (10)). At the liquid-solid interface,

Figure 2.
Schematic diagram of
computational cells near
the interface and an
approximation of the
temperature distribution
across the interface
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where we do not need an accurate value of the temperature gradients, the geometric
averaging is used to assess the vertical heat flux, while the algebraic averaging is
applied in the horizontal direction.

To illustrate the method for the temperature calculation, we solve equation (10) for a
test problem in which the interface between two motionless fluids ðu ¼ 0Þ is slightly
inclined and the heat flux is due to a temperature difference between the upper and
lower walls (Figure 3(a)). In Figure 3(b) and (c), we present the x and y components
of the temperature gradient along the interface, respectively. We are interested in the
temperature gradient since the thermocapillary force is directly proportional to its
magnitude. To compare with our approach, we also include the results for the
temperature gradients calculated with the algebraic and geometric averaging of the
thermal conductivity within the numerical cells at the interface.

One can expect for the considered problem (Figure 3(a)) that the interface
temperature changes monotonically, meaning that the magnitude of the temperature
gradient may not oscillate along the interface. Nevertheless, both the algebraic and
geometric averaging results in strong oscillations of the temperature gradient with a
period which is correlated with the numerical grid spacing. These oscillations
eventually cause spurious currents along the interface induced by the unphysical
variations in the thermocapillary force. In contrast, our approach gives a much better
approximation of the gradients along the interface. Although there is still some noise in
›T=›x due to the discretization, it can be reduced by applying an appropriate
smoothing. Our simulations, however, show that this noise practically does not affect
the results.

To include the effect of surface tension into the momentum equations, we adopt the
continuum surface force approach (Kothe and Mjolsness, 1992). The body force due to
surface tension is given by:

Fs ¼
2rds

ðr0 þ r1Þ
½sknþ ð1 2 n^nÞ7s�; ð16Þ

where s is the surface tension, ds ¼ j7 ~Cj is the Dirac distribution function at the
interface, k is the curvature of the interface, and n is the unit normal to the interface.
Moreover, 7s ¼ sT7T , where sT is the temperature coefficient of surface tension.
To obtain 7T at the gas-liquid interface, we calculate the temperature gradients at
the cells near the interface, which are filled with the liquid, and then extrapolate
the gradients to the interface. To assess the unit normal n and the curvature of the
interface k, we utilize a reconstruction algorithm (Sussman, 2003), which is based on
reconstructing the “height” function S directly from the color function C.

Although the ENO scheme, which is used to calculate C provides good tracking of
the interface, it causes some numerical “foam” around the interface, which can
be accumulated during long time calculations. We, therefore, restore C near the
interface in such a way that the “height” functions S and the normal n remain
unchanged, while the “foam” is eliminated. In fact, this procedure breaks the global
mass conservation. Our simulations show, however, that the change of the mass is
rather small and usually does not exceed 1023 of its initial value even for long
calculations.
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Figure 3.
Test problem for the
solution of equation (4) for
an inclined interface
between two domains of
an equal average
thickness
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Computational parameters
We carry out the simulations for two liquids, which are water and silicon oil, while the
gas is air. Their properties are chosen at Tw ¼ 238C. The calculations are performed
for two types of wall structures. The first wall (Figure 1) corresponds to the
experiments reported in Alexeev et al. (2005) with d ¼ 1 mm, hw ¼ 0.5 mm and
f ¼ 308. The second wall is given by:

yw ¼ A 1 2 cos
2px

d

� �� �
; ð17Þ

where A ¼ hw=2 is the wall structure amplitude. Properties of the wall material are
those of copper. We also set in all our calculations hg ¼ 0.4 mm.

We perform the calculations for a half of the groove. The computational domain is
0 # x # d=2 and 0 # y # ðhw þ Dh* þ hgÞ (Figure 1). Our rectangular computational
grid usually consists of 96 £ 96 cells. To test the grid quality its density was
increased, indicating that an increase in grid density practically does not affect the
solution.

The calculations are started with zero initial velocities and continued up to the
moment when a steady state solution is obtained.

Results and discussion
Model validation
We first consider thermocapillary convection in a rectangular cavity due to a
temperature difference between the sidewalls. In the limit of thin film within a wide
cavity, this problem can be solved analytically (Levich, 1962) and, therefore, can serve
as a test case for our numerical model. Figure 4(a) and (b) shows the velocity and
temperature distributions within the cavity for silicon oil and water, respectively.
As expected, the thermocapillary force induces vortexes within the fluids in which the
flow near the interface is directed toward the wall having lower temperature. Note that
the isotherms within the silicon oil (Figure 4(a)) are practically vertical that
corresponds to the conducting solution, while in Figure 4(b) for water, they are
considerably distorted by the flow. This difference arises because water has a lower
Prandtl number as compared to the silicon oil.

Figure 5 shows the pressure distribution along the gas-liquid interface the solutions
shown in Figure 4 as well as the theoretical prediction (Levich, 1962). As seen, there is
good agreement between the numerical solutions and the theory. Some discrepancy
near the sidewalls can be attributed to the fact that the free surfaces are deformed by
the flow, while the theory neglects this effect.

To verify our numerical model for the case when the thermocapillary
convection is driven by a vertical temperature gradient, we first consider a
rectangular cavity and estimate the critical Marangoni number M cr corresponding
to the onset of thermocapillary convection (Colinet et al., 2001). The Marangoni
number is given by:

M ¼
sTDT1Dh

r1n1a1
; ð18Þ
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where DT1 ¼ DTBið1 þ Bi Þ21 is the temperature drop over the liquid, a
the thermal diffusivity, Dh the average thickness of the liquid film and
Bi ¼ l0Dh=l1hg the Biot number. In our simulations, we found good agreement
with the linear theory (Colinet et al., 2001). Namely, for M less than the theoretical
value of M cr (Colinet et al., 2001), an initial disturbance introduced into the
conducting temperature distribution decays and the fluid flow stops after a
transient, while for M . M cr, steady vortexes develop.

For more thorough model validation in the case of heated grooved walls, we
conducted experiments with a thin film of silicon oil (5cSt) on a wall with a structure
shown in Figure 1. In the experiments, we measured temperature of the film as well as

Figure 4.
Velocity and temperature
distributions within a
liquid film in a rectangular
cavity due to a
thermocapillary flow
induced by a temperature
difference between the
sidewalls
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its maximal velocity. A detailed description of the experimental setup and the
procedure can be found elsewhere (Alexeev et al., 2005).

Figure 6 shows a numerically calculated flow pattern for M < 1 ! M cr.
The simulation predicts the formation of a vortex, in which the liquid near the
free surface moves toward the groove trough at x ¼ 0. This convection is induced by
the thermocapillary force due to a temperature gradient along the gas-liquid interface,
which is originated from the topography of the heated wall. Moreover, in agreement
with the experiments (Alexeev et al., 2005), our simulations predict that the convection
in films on structured walls arises for any temperature difference across the film.

In Figure 7(a), we compare the experimentally measured maximal values of the liquid
velocity at the gas-liquid interface, umax, with the predictions of the numerical model.

Figure 6.
Velocity and temperature
distributions in a silicon

oil film on a structured
wall (Figure 1)
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One can see that there is reasonable agreement between the model and the experiments,
although almost everywhere the model prediction is slightly below the experimental
data. When the temperature exceeds the value corresponding to M cr, the velocity
increases much faster than that for the lower temperatures. It is an effect of the
convective motion within the liquid layer on heat transfer. Indeed, the circulations in
the layer bring hotter liquid from the hot wall to the interface, thus increasing the
temperature gradient and the thermocapillary force that in turn increases the velocity.

Figure 7(b) shows the measured and calculated temperature drop across the liquid
film as a function of the wall temperature. To demonstrate the effect of the convection on
heat transfer, the temperature drop is also calculated when the convective terms are
omitted from equation (4). In this case, the temperature drop increases linearly with Tw,
while in the calculations with the convection terms and in the experiments, the
temperature drop declines from the straight line for M . M cr. This result suggests that
there is an increase in heat transfer due to the Marangoni convection within the liquid.

We conclude that the overall agreement between our calculations and the theory
and experiments is rather convincing, and our numerical model may be applied to
study thermocapillary flows within thin films on structured walls. In what follows, we
present some numerical solutions, which are characteristic of such flows.

Figure 7.
(a) Maximal velocity of the
liquid as a function of
wall temperature;
(b) temperature drop
over the liquid layer as
a function of wall
temperature
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Flow velocities
Figure 8 shows the dependence of umax on the Marangoni number. In Figure 8(a), the
temperature drop is fixed at DT ¼ 10 K and M changes due to Dh*. In Figure 8(b), M
increases due to the increasing temperature difference, while the other parameters are
constant.

As seen in Figure 8(a), all the data collapse into a single curve. For M . 100,
umax , a1Dh

21M 1=2. Taking into account that DT ¼ const, we obtain that M
changes as Dh 2, and, therefore, umax , const. It means that for larger M , umax

practically does not depend on the thickness of the liquid layer.
The temperature difference DT , however, does modify the velocity as shown in

Figure 8(b). Note that umax grows exponentially with increasing M . It is interesting
that for different Dh*, umax follows a common curve. Our calculations show that for
Dh* ¼ const, u , DT 2=3.

Figure 8.
Maximal velocity of liquid
vs the Marangoni number
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Temperature transient
The simulations show that when the wall temperature increases suddenly, the liquid
film may be ruptured as shown in Figure 9. In this simulation, uniform initial
temperature equal to Tw 2 DT is imposed. At t ¼ 0, Tw is applied at y ¼ 0. The
rupture is caused by a large temperature gradient along the free surface, which is
induced when the thermal boundary layer initially formed along the liquid-wall
interface reaches the gas-liquid interface near the groove crest.

We note that for the parameters in Figure 9, a steady state solution may be obtained
either by a steady increase in the wall temperature or when the temperature change
takes place at gas above the film. In the latter case, a thermal boundary layer is formed
first at the gas-liquid interface. The temperature propagates perpendicular to the free
surface, preventing the appearance of strong temperature gradients causing the
rapture.

Heat transfer
Figure 10 shows the Nusselt number as a function of Dh* for water and silicon oil.
In these calculations, we consider a wall having a structure shown in Figure 1, which is
either heated or cooled.

When DT ¼ 210 K, i.e. the wall is cooled, Nu exceeds unity by few percents for
small Dh* only, while for larger Dh*, Nu is practically equal to unity. Thus, the effect
of convection on heat transport from a cooled structured wall is relatively weak and
prevails for small Dh* only.

For a heated wall, however, our simulations predict that heat transfer can be
significantly enhanced by the Marangoni convection within the film. In this case, Nu

Figure 9.
Velocity and temperature
distribution in a liquid
film just before rupture
due to an abrupt increase
in wall temperature
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has maximum, which occurs for about the same optimal film thickness Dh*opt for both
liquids. Thus, Dh*opt corresponds to a layer thickness, for which the effect of convection
on heat transfer is most pronounced. Our simulations show that if Dh* . Dh*opt, a
stagnant layer of liquid is formed under the vortexes attached to the gas-liquid
interface. This stagnant layer reduces the convective heat transfer from the wall,
resulting in a decrease in Nu.

We also note in Figure 10 that the sinusoidal wall provides better convective heat
transport compared to the experimental wall. Thus, an appropriate choice of the
structure can enhance heat transfer in thin liquid films on structured walls.

Summary
We study thermocapillarity-induced flow of thin liquid films covering heated
horizontal walls with 2D topography. To this end, we develop a numerical model based
on the integration of the Navier-Stokes and energy equations by a finite difference
algorithm. The mobile gas-liquid interface is tracked with the VOF technique. The
numerical model is verified by comparison with a theory and experiments showing
good agreement.

We demonstrate that convective motion within a film on a structured wall exists at
any nonzero Marangoni number. The motion is caused by surface tension gradients
induced by temperature differences at the gas-liquid interface due to the spatial
structure of the heated wall. Our simulations predict that the maximal flow velocity,
which occurs at the gas-liquid interface, is practically independent from the thickness
of the liquid layer, and increases according to a power-law with increasing DT .

It is found that an abrupt change in wall temperature causes rupture of the liquid
film near the structure crest. The rupture may occur at the same value of DT , for which
a steady state solution exists and can be obtained either by a gradual increase in wall
temperature or cooling gas above the liquid.

We show that the thermocapillary convection notably enhances heat transfer in
liquid films on heated structured walls. An optimal film thickness exists for which Nu
attains the maximal value for a specific temperature drop.

Figure 10.
Numerically calculated

Nusselt number as a
function of film thickness
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